461 research outputs found

    Comparison of ionospheric radio occultation CHAMP data with IRI 2001

    Get PDF
    GPS radio occultation measurements on board low Earth orbiting satellites can provide vertical electron density profiles of the ionosphere from satellite orbit heights down to the bottomside. Ionospheric radio occultation (IRO) measurements carried out onboard the German CHAMP satellite mission since 11 April 2001 were used to derive vertical electron density profiles (EDP’s) on a routine basis. About 150 vertical electron density profiles may be retrieved per day thus providing a huge data basis for testing and developing ionospheric models. Although the validation of the EDP retrievals is not yet completed, the paper addresses a systematic comparison of about 78 000 electron density profiles derived from CHAMP IRO data with the International Reference Ionosphere (IRI 2001).</p><p style=&quot;line-height: 20px;&quot;> The results are discussed for quite different geophysical conditions, e.g. as a function of latitude, local time and geomagnetic activity.</p><p style=&quot;line-height: 20px;&quot;> The comparison of IRO data with corresponding IRI data indicates that IRI generally overestimates the upper part of the ionosphere whereas it underestimates the lower part of the ionosphere under high solar activity conditions. In a first order correction this systematic deviation could be compensated by introducing a height dependence correction factor in IRI profiling

    Forecast of Total Electron Content over Europe for disturbed ionospheric Conditions

    Get PDF
    A general picture of the occurrence of ionospheric storms as function of local time, season and location is known from numerous studies over the past 50 years. Nevertheless, it is not yet possible to say how the ionosphere will actually respond to a given space weather event because the measurements of the onset time, location of maximum perturbation, amplitude and type of storm (positive or negative) deviate much from the climatology. However, statistical analyses of numerous storm events observed in the Total Electron Content (TEC) since 1995 enable to estimate and predict a most probable upcoming perturbed TEC over Europe based on forecasts of geomagnetic activity. A first approach will be presented here. The forecast of perturbed TEC is part of the Forecast System Ionosphere build under the umbrella of the FP7 project AFFECTS∗ (Advanced Forecast For Ensuring Communication Through Space). It aims to help users mitigating the impact on communication system

    A new global model for the ionospheric F2 peak height for radio wave propagation

    Get PDF
    The F2-layer peak density height <I>hm</I>F2 is one of the most important ionospheric parameters characterizing HF propagation conditions. Therefore, the ability to model and predict the spatial and temporal variations of the peak electron density height is of great use for both ionospheric research and radio frequency planning and operation. For global <I>hm</I>F2 modelling we present a nonlinear model approach with 13 model coefficients and a few empirically fixed parameters. The model approach describes the temporal and spatial dependencies of <I>hm</I>F2 on global scale. For determining the 13 model coefficients, we apply this model approach to a large quantity of global <I>hm</I>F2 observational data obtained from GNSS radio occultation measurements onboard CHAMP, GRACE and COSMIC satellites and data from 69 worldwide ionosonde stations. We have found that the model fits to these input data with the same root mean squared (RMS) and standard deviations of 10%. In comparison with the electron density NeQuick model, the proposed Neustrelitz global <I>hm</I>F2 model (Neustrelitz Peak Height Model – NPHM) shows percentage RMS deviations of about 13% and 12% from the observational data during high and low solar activity conditions, respectively, whereas the corresponding deviations for the NeQuick model are found 18% and 16%, respectively

    Assessment of space plasma effectsfor satellite applications:Working Group 2 overview

    Get PDF
    An important part of the tasks of Working Group 2 of the COST Action 271 «Assessment of space plasma effect for satellites applications» is the assessment of novel data sources for information about the state of ionisation of the ionosphere. This report deals with those aspects which are not represented adequately in the scientific papers in this issue. Here emphasis is given to the product aspect (data and model collections, descriptions of methods and algorithms, availability of products, expected future developments) and the links between the past COST Actions 238 and 251 with the present Action 271 and with possible future cooperations. Working Group 2 was leading in the transionospheric propagation aspects of possible products for the International Telecommunication Union’s Radiocommunication (ITU-R) Study Group 3. This report gives a short overview emphasizing future developments

    Behaviour of large scale structures of the electron content as a key parameterfor range errors in GNSS applications

    Get PDF
    The Total Electron Content (TEC) of the ionosphere is a key parameter for describing the ionospheric state. This paper deals with the large scale behaviour of TEC under low and high solar activity conditions. Large scale structures of the plasma density are formed by fundamental ionospheric processes mainly driven by solar radiation input, neutral winds and electric fields. The monitoring of large scale structures contributes to a comprehensive understanding of these coupling mechanisms which are rather complex particularly under perturbed geomagnetic conditions. The paper addresses techniques to monitor TEC with sufficient accuracy of a few TEC units (1016m-2) to measure large scale structures over Europe and over the polar areas. The availability of GPS data from global GPS receiver networks as e.g., those from the International GPS Service (IGS) is dense enough to generate TEC maps on a continuous base. A model assisted technique is briefly described for mapping TEC over the European and polar areas. A statistical estimation of horizontal TEC gradients reveals large scale gradients of up to about 6 TECU/1000 km under high solar activity conditions at an occurrence probability level of about 1%. Occasionally, during severe ionospheric storms this value may increase by a factor of 10 or even more. A close correlation of large scale gradients and the geomagnetic activity has been found giving the chance to forecast TEC gradient amplitudes by using predicted geomagnetic indices. Since TEC is proportional to first-order range errors in Global Satellite Navigation Systems (GNSS) such as the US GPS and the Russian GLONASS the study of the behaviour of this parameter has a practical meaning in GNSS based navigation and positioning. The paper addresses the close relationship between TEC and ranging errors in GNSS. Having in view Galileo, the planned EuropeÂ’s own global satellite navigation system, some aspects related to the mitigation of ionospheric propagation errors within the European Geostationary Navigation Overlay System (EGNOS) are discussed. Since EGNOS will augment the two above mentioned satellite navigation systems and make them suitable for safety critical applications such as flying aircraft or navigating ships through narrow channels the ionospheric propagation errors have to be mitigated as much as possible

    Nowcasting, forecasting and warning for ionospheric propagation: supporting databases

    Get PDF
    The use of data is essential in the context of nowcasting, forecasting and warning of ionospheric propagation conditions, with roles to play in the development, evaluation and operation of models and services. Descriptions are given of three databases that have been established in the course of the COST 271 Action: a database of prompt ionospheric soundings, an extension to a database generated by the EISCAT incoherent scatter radars, and a database intended to facilitate evaluation of TEC estimation methods. Each database includes some background information, a description of the contents and interface, and instructions as to how to gain access to it

    Radio occultation techniques for probing the ionosphere

    Get PDF
    GPS radio occultation measurements establish the basis for a new remote sensing technique for vertical profile information on the electron density of the entire ionosphere from satellite orbit heights down to the bottomside. No other profiling technique such as vertical sounding or incoherent scatter, unifies vertical profiling through the entire ionosphere with global coverage. Inversion methods are described both for vertical profiling as well as for tree dimensional electron density reconstructions of the ionosphere. In three dimensional electron density reconstructions using signals from Global Navigation Satellite Systems (GNSS), the Ionospheric Radio Occultation (IRO) measurements provide vertical information which is complementary to the information obtained by ground based measurements. Assessment of achievable accuracy and spatial resolution are addressed by simulation studies. IRO measurements have been carried out onboard the German CHAMP satellite since 11 April 2001 on a routine basis. Assuming a spherically layered ionosphere, up to about 150 Electron Density Profiles (EDPs) per day are retrieved within a latency of 3 h. Validation results obtained by using independent data sources are reported. The validation with vertical sounding data in mid-latitudes indicates a small positive bias in the plasma frequency of up to about 0.5 MHz throughout the entire profile. Averages of the numerous EDPs show wellknown ionospheric phenomena such as the equatorial anomaly, the winter anomaly and the expansion of the profile with increasing solar energy input. It is concluded that CHAMP-IRO measurements have the potential to establish global data sets of vertical electron density profiles for developing and improving global ionospheric models and to provide operational space weather information

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT's objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real tim
    • …
    corecore